Dosen Jurusan EP_FE_UP

Sabtu, 01 Februari 2014

SEJARAH KALKULUS

A.        DEFINISI KALKULUS
Kalkulus (bahasa Latin, kalkulus, batu kecil yang digunakan untuk menghitung) adalah cabang matematika terfokus pada batas, fungsi, turunan, integral, dan deret tak hingga. Mata kuliah ini merupakan bagian utama modern pendidikan matematika. Ini memiliki dua cabang utama, diferensial kalkulus dan integral kalkulus, yang berhubungan dengan teorema fundamental kalkulus. Kalkulus adalah studi tentang perubahan, dengan cara yang sama bahwa geometri adalah studi tentang bentuk dan aljabar adalah studi tentang operasi dan aplikasi mereka untuk memecahkan persamaan. Sebuah kursus dalam kalkulus adalah pintu gerbang ke lain, kursus lebih maju dalam matematika dikhususkan untuk mempelajari fungsi dan batas, luas disebut analisis matematis. Kalkulus memiliki aplikasi luas dalam ilmu pengetahuan, ekonomi, dan rekayasa dan dapat memecahkan banyak masalah yang aljabar saja tidak cukup.
Secara historis, kalkulus disebut "kalkulus infinitesimals", atau "kalkulus". Lebih umum, kalkulus (kalkuli jamak) mengacu pada metode atau sistem perhitungan dipandu oleh manipulasi simbolis ekspresi. Beberapa contoh terkenal lainnya kalkuli adalah kalkulus proposisional, kalkulus variasional, kalkulus lambda, pi kalkulus, dan bergabung kalkulus.

B.        SEJARAH KALKULUS

1.     ZAMAN KUNO

Isaac Newton mengembangkan penggunaan kalkulus dalam bukunya hukum gerak dan gravitasi . Periode kuno memperkenalkan beberapa ide yang menyebabkan terpisahkan kalkulus, tetapi tampaknya tidak telah mengembangkan ide-ide ini dengan cara yang ketat dan sistematis. Perhitungan volume dan daerah, salah satu tujuan dari integral kalkulus, dapat ditemukan di Mesir Moskow papirus (c. 1820 SM), tetapi formula instruksi belaka, dengan indikasi untuk metode, dan beberapa dari mereka salah. Sejak usia matematika Yunani, Eudoxus (sekitar 408-355 SM) menggunakan metode kelelahan, yang prefigures konsep batas, untuk menghitung luas dan volume, sementara Archimedes (± 287-212 SM) mengembangkan gagasan ini lebih jauh, menciptakan heuristik yang menyerupai metode kalkulus integral. Para metode kelelahan kemudian diciptakan kembali di Cina oleh Liu Hui pada abad ke-3 untuk menemukan luas lingkaran. Pada abad ke-5, Zu Chongzhi membentuk metode yang kemudian akan disebut prinsip Cavalieri 's untuk mencari volume sebuah bola.

2.     PADA ABAD PERTENGAHAN

Dalam matematika abad ke-14 India Madhava dari Sangamagrama dan sekolah Kerala astronomi dan matematika menyatakan banyak komponen kalkulus seperti deret Taylor, terbatas seri perkiraan, sebuah uji integral untuk konvergensi, bentuk awal diferensiasi, Istilah integrasi dengan istilah, metode iteratif untuk solusi non-linear persamaan, dan teori bahwa area di bawah kurva adalah integralnya. Beberapa mempertimbangkan Yuktibhāṣā sebagai teks pertama pada kalkulus.

 

3.     PADA MASA MODERN

Di Eropa, karya mendasar adalah sebuah risalah karena Bonaventura Cavalieri, yang berpendapat bahwa volume dan daerah harus dihitung sebagai jumlah dari volume dan bidang amat sangat tipis lintas-bagian. Ide-ide serupa dengan 'Archimedes di Cara ini, tetapi risalah ini telah hilang hingga bagian awal abad kedua puluh. Kerja Cavalieri's tidak dihormati karena metodenya dapat menyebabkan hasil yang salah, dan jumlah yang sangat kecil dia memperkenalkan yang jelek pada awalnya.
Studi formal kalkulus dikombinasikan infinitesimals Cavalieri's dengan kalkulus terbatas dari perbedaan dikembangkan di Eropa pada sekitar waktu yang sama. Pierre de Fermat, mengklaim bahwa dia dipinjam dari Diophantus, memperkenalkan konsep adequality, yang diwakili kesetaraan hingga jangka kesalahan sangat kecil. Kombinasi ini dicapai oleh John Wallis, Isaac Barrow, dan James Gregory, dua terakhir membuktikan teorema dasar kalkulus kedua sekitar 1675.
Para aturan produk dan aturan rantai, gagasan derivatif lebih tinggi, deret Taylor, dan fungsi analitis diperkenalkan oleh Isaac Newton dalam notasi istimewa yang digunakan untuk memecahkan masalah matematika fisika. Dalam publikasi, Newton diulang ide-idenya sesuai dengan idiom matematika dari waktu, menggantikan perhitungan dengan infinitesimals oleh argumen geometris setara yang dianggap tercela. Dia menggunakan metode kalkulus untuk memecahkan masalah gerak planet, bentuk permukaan cairan berputar, oblateness bumi, gerakan berat geser pada cycloid, dan banyak masalah lain yang dibahas dalam bukunya Principia Mathematica (1687). Dalam pekerjaan lain, ia mengembangkan ekspansi seri untuk fungsi, termasuk kekuatan fraksional dan irasional, dan jelas bahwa ia memahami prinsip-prinsip dari deret Taylor. Dia tidak mempublikasikan semua penemuan ini, dan saat ini metode yang sangat kecil masih dianggap jelek.
Gottfried Wilhelm Leibniz adalah orang pertama yang mempublikasikan hasilnya pada pengembangan kalkulus.
http://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Gottfried_Wilhelm_von_Leibniz.jpg/200px-Gottfried_Wilhelm_von_Leibniz.jpgIde-ide ini adalah sistematis ke dalam kalkulus sejati infinitesimals oleh Gottfried Wilhelm Leibniz, yang pada awalnya dituduh plagiarisme oleh Newton. Dia sekarang dianggap sebagai penemu independen dan kontributor kalkulus. Nya kontribusi adalah untuk menyediakan sebuah set aturan untuk memanipulasi jumlah yang sangat kecil, memungkinkan perhitungan turunan kedua dan lebih tinggi, dan menyediakan aturan produk dan aturan rantai, dalam diferensial dan bentuk integral. Tidak seperti Newton, Leibniz membayar banyak perhatian pada formalisme, sering menghabiskan hari-hari menentukan simbol-simbol yang sesuai untuk konsep.
Leibniz dan Newton biasanya baik dikreditkan dengan penemuan kalkulus. Newton adalah yang pertama menerapkan kalkulus untuk umum fisika dan Leibniz mengembangkan banyak notasi yang digunakan dalam kalkulus hari ini. Wawasan dasar yang baik Newton dan Leibniz diberikan adalah hukum diferensiasi dan integrasi, kedua dan turunan yang lebih tinggi, dan gagasan dari seri polinomial aproksimasi. Saat Newton, teorema dasar kalkulus dikenal.
Ketika Newton dan Leibniz mempublikasikan hasil mereka pertama, ada kontroversi besar di mana matematika (dan karena itu negara mana) kredit layak. Newton berasal hasilnya pertama, tetapi Leibniz dipublikasikan pertama. Newton mengklaim Leibniz mencuri ide dari catatan yang tidak dipublikasikan, yang Newton telah dibagi dengan beberapa anggota dari Royal Society . Kontroversi ini dibagi berbahasa Inggris ahli matematika dari matematikawan benua selama bertahun-tahun, sehingga merugikan matematika Inggris. Pemeriksaan yang seksama atas karya-karya dari Leibniz dan Newton menunjukkan bahwa mereka tiba di hasil mereka secara independen, dengan Leibniz memulai pertama dengan integrasi dan Newton dengan diferensiasi. Saat ini, baik Newton dan Leibniz diberikan kredit untuk mengembangkan kalkulus secara independen. Ini adalah Leibniz, namun, yang memberikan disiplin baru namanya. Newton disebut kalkulus "ilmu fluxions".
Sejak saat Leibniz dan Newton, banyak yang hebat matematika telah memberi kontribusi pada pembangunan berkelanjutan kalkulus. Salah satu karya pertama dan paling lengkap pada analisis yang terbatas dan sangat kecil ditulis pada tahun 1748 oleh Maria Gaetana Agnesi .

Sumber:
Dapat dilihat disini

1 komentar: