Dosen Jurusan EP_FE_UP

Selasa, 04 Februari 2014

MATRIKS (Transpose Matriks)

Yang dimaksud dengan Transpos dari suatu matriks adalah mengubah komponen-komponen dalam matriks, dari yang baris menjadi kolom, dan yang kolom di ubah menjadi baris.
Contoh: Matriks (1)
A = \begin{bmatrix}
2 & -5 & 1\\
-1 & 3 & 3\\
5 & 4 & 8\\
\end{bmatrix} ditranspose menjadi AT = \begin{bmatrix}
2 & -1 & 5\\
-5 & 3 & 4\\
1 & 3 & 8\\
\end{bmatrix}
Contoh: Matriks (2)
B = \begin{bmatrix}
1 & 3 & 5 & 7\\
9 & 5 & 7 & 4\\
4 & 1 & 5 & 3\\
\end{bmatrix} ditranspose menjadi BT = \begin{bmatrix}
1 & 9 & 4\\
3 & 5 & 1\\
5 & 7 & 5\\
7 & 4 & 3\\
\end{bmatrix}
Rumus-rumus operasi Transpose sebagai berikut:
1. ((A)^T)^T = A
2. (A+B)^T = A^T + B^T dan (A-B)^T = A^T - B^T
3. (kA)^T = kA^T dimana k adalah skalar
4. (AB)^T = B^T A^T

JENIS-JENIS MATRIKS (Bagan)


Sabtu, 01 Februari 2014

SEJARAH KALKULUS

A.        DEFINISI KALKULUS
Kalkulus (bahasa Latin, kalkulus, batu kecil yang digunakan untuk menghitung) adalah cabang matematika terfokus pada batas, fungsi, turunan, integral, dan deret tak hingga. Mata kuliah ini merupakan bagian utama modern pendidikan matematika. Ini memiliki dua cabang utama, diferensial kalkulus dan integral kalkulus, yang berhubungan dengan teorema fundamental kalkulus. Kalkulus adalah studi tentang perubahan, dengan cara yang sama bahwa geometri adalah studi tentang bentuk dan aljabar adalah studi tentang operasi dan aplikasi mereka untuk memecahkan persamaan. Sebuah kursus dalam kalkulus adalah pintu gerbang ke lain, kursus lebih maju dalam matematika dikhususkan untuk mempelajari fungsi dan batas, luas disebut analisis matematis. Kalkulus memiliki aplikasi luas dalam ilmu pengetahuan, ekonomi, dan rekayasa dan dapat memecahkan banyak masalah yang aljabar saja tidak cukup.
Secara historis, kalkulus disebut "kalkulus infinitesimals", atau "kalkulus". Lebih umum, kalkulus (kalkuli jamak) mengacu pada metode atau sistem perhitungan dipandu oleh manipulasi simbolis ekspresi. Beberapa contoh terkenal lainnya kalkuli adalah kalkulus proposisional, kalkulus variasional, kalkulus lambda, pi kalkulus, dan bergabung kalkulus.

B.        SEJARAH KALKULUS

1.     ZAMAN KUNO

Isaac Newton mengembangkan penggunaan kalkulus dalam bukunya hukum gerak dan gravitasi . Periode kuno memperkenalkan beberapa ide yang menyebabkan terpisahkan kalkulus, tetapi tampaknya tidak telah mengembangkan ide-ide ini dengan cara yang ketat dan sistematis. Perhitungan volume dan daerah, salah satu tujuan dari integral kalkulus, dapat ditemukan di Mesir Moskow papirus (c. 1820 SM), tetapi formula instruksi belaka, dengan indikasi untuk metode, dan beberapa dari mereka salah. Sejak usia matematika Yunani, Eudoxus (sekitar 408-355 SM) menggunakan metode kelelahan, yang prefigures konsep batas, untuk menghitung luas dan volume, sementara Archimedes (± 287-212 SM) mengembangkan gagasan ini lebih jauh, menciptakan heuristik yang menyerupai metode kalkulus integral. Para metode kelelahan kemudian diciptakan kembali di Cina oleh Liu Hui pada abad ke-3 untuk menemukan luas lingkaran. Pada abad ke-5, Zu Chongzhi membentuk metode yang kemudian akan disebut prinsip Cavalieri 's untuk mencari volume sebuah bola.

2.     PADA ABAD PERTENGAHAN

Dalam matematika abad ke-14 India Madhava dari Sangamagrama dan sekolah Kerala astronomi dan matematika menyatakan banyak komponen kalkulus seperti deret Taylor, terbatas seri perkiraan, sebuah uji integral untuk konvergensi, bentuk awal diferensiasi, Istilah integrasi dengan istilah, metode iteratif untuk solusi non-linear persamaan, dan teori bahwa area di bawah kurva adalah integralnya. Beberapa mempertimbangkan Yuktibhāṣā sebagai teks pertama pada kalkulus.

 

3.     PADA MASA MODERN

Di Eropa, karya mendasar adalah sebuah risalah karena Bonaventura Cavalieri, yang berpendapat bahwa volume dan daerah harus dihitung sebagai jumlah dari volume dan bidang amat sangat tipis lintas-bagian. Ide-ide serupa dengan 'Archimedes di Cara ini, tetapi risalah ini telah hilang hingga bagian awal abad kedua puluh. Kerja Cavalieri's tidak dihormati karena metodenya dapat menyebabkan hasil yang salah, dan jumlah yang sangat kecil dia memperkenalkan yang jelek pada awalnya.
Studi formal kalkulus dikombinasikan infinitesimals Cavalieri's dengan kalkulus terbatas dari perbedaan dikembangkan di Eropa pada sekitar waktu yang sama. Pierre de Fermat, mengklaim bahwa dia dipinjam dari Diophantus, memperkenalkan konsep adequality, yang diwakili kesetaraan hingga jangka kesalahan sangat kecil. Kombinasi ini dicapai oleh John Wallis, Isaac Barrow, dan James Gregory, dua terakhir membuktikan teorema dasar kalkulus kedua sekitar 1675.
Para aturan produk dan aturan rantai, gagasan derivatif lebih tinggi, deret Taylor, dan fungsi analitis diperkenalkan oleh Isaac Newton dalam notasi istimewa yang digunakan untuk memecahkan masalah matematika fisika. Dalam publikasi, Newton diulang ide-idenya sesuai dengan idiom matematika dari waktu, menggantikan perhitungan dengan infinitesimals oleh argumen geometris setara yang dianggap tercela. Dia menggunakan metode kalkulus untuk memecahkan masalah gerak planet, bentuk permukaan cairan berputar, oblateness bumi, gerakan berat geser pada cycloid, dan banyak masalah lain yang dibahas dalam bukunya Principia Mathematica (1687). Dalam pekerjaan lain, ia mengembangkan ekspansi seri untuk fungsi, termasuk kekuatan fraksional dan irasional, dan jelas bahwa ia memahami prinsip-prinsip dari deret Taylor. Dia tidak mempublikasikan semua penemuan ini, dan saat ini metode yang sangat kecil masih dianggap jelek.
Gottfried Wilhelm Leibniz adalah orang pertama yang mempublikasikan hasilnya pada pengembangan kalkulus.
http://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Gottfried_Wilhelm_von_Leibniz.jpg/200px-Gottfried_Wilhelm_von_Leibniz.jpgIde-ide ini adalah sistematis ke dalam kalkulus sejati infinitesimals oleh Gottfried Wilhelm Leibniz, yang pada awalnya dituduh plagiarisme oleh Newton. Dia sekarang dianggap sebagai penemu independen dan kontributor kalkulus. Nya kontribusi adalah untuk menyediakan sebuah set aturan untuk memanipulasi jumlah yang sangat kecil, memungkinkan perhitungan turunan kedua dan lebih tinggi, dan menyediakan aturan produk dan aturan rantai, dalam diferensial dan bentuk integral. Tidak seperti Newton, Leibniz membayar banyak perhatian pada formalisme, sering menghabiskan hari-hari menentukan simbol-simbol yang sesuai untuk konsep.
Leibniz dan Newton biasanya baik dikreditkan dengan penemuan kalkulus. Newton adalah yang pertama menerapkan kalkulus untuk umum fisika dan Leibniz mengembangkan banyak notasi yang digunakan dalam kalkulus hari ini. Wawasan dasar yang baik Newton dan Leibniz diberikan adalah hukum diferensiasi dan integrasi, kedua dan turunan yang lebih tinggi, dan gagasan dari seri polinomial aproksimasi. Saat Newton, teorema dasar kalkulus dikenal.
Ketika Newton dan Leibniz mempublikasikan hasil mereka pertama, ada kontroversi besar di mana matematika (dan karena itu negara mana) kredit layak. Newton berasal hasilnya pertama, tetapi Leibniz dipublikasikan pertama. Newton mengklaim Leibniz mencuri ide dari catatan yang tidak dipublikasikan, yang Newton telah dibagi dengan beberapa anggota dari Royal Society . Kontroversi ini dibagi berbahasa Inggris ahli matematika dari matematikawan benua selama bertahun-tahun, sehingga merugikan matematika Inggris. Pemeriksaan yang seksama atas karya-karya dari Leibniz dan Newton menunjukkan bahwa mereka tiba di hasil mereka secara independen, dengan Leibniz memulai pertama dengan integrasi dan Newton dengan diferensiasi. Saat ini, baik Newton dan Leibniz diberikan kredit untuk mengembangkan kalkulus secara independen. Ini adalah Leibniz, namun, yang memberikan disiplin baru namanya. Newton disebut kalkulus "ilmu fluxions".
Sejak saat Leibniz dan Newton, banyak yang hebat matematika telah memberi kontribusi pada pembangunan berkelanjutan kalkulus. Salah satu karya pertama dan paling lengkap pada analisis yang terbatas dan sangat kecil ditulis pada tahun 1748 oleh Maria Gaetana Agnesi .

Sumber:
Dapat dilihat disini

SEJARAH ALJABAR

Sejarah Aljabar dari masa Babilonia

Baiklah di Bab II ini sobat Infinty kita akan sedikit mengupas sedikit Sejarah Aljabar dari masa Babilonia Kalau sudah berhadapan dengan masalah pendidikan, pasti tidaklah lepas dari ilmu yang kita peroleh disekolah. Menurut penulis dan kebanyakan pelaku pendidikan secara umum, ilmu hitung semacam Matematika merupakan ilmu yang pasti sulit untuk dipahami. Salah satu ilmu itu pasti sudah tidak asing di telinga kita adalah Ilmu Aljabar. Hampir setiap ada pelajaran yang ada hubungannya dengan materi Aljabar, penulis pribadi lebih sering tidak mengerti dari pada paham hehe.


tapi saya teringat dengan kata-kata dari Albert einstein


Saya tidak memiliki bakat tertentu. Saya hanya ingin tahu.
I have no particular talent. I am merely inquisitive. 

(albert eintein) 


jadi sobat Infinity jangan pernah berhenti untuk ingin tahu

karena sobat 


Di tengah kesulitan terdapat kesempatan.
In the middle of difficulty lies opportunity.

(albert einstein)


Lalu pernah kah kita berfikir dari mana asal ilmu Aljabar itu. Mungkin juga sebagian dari pembaca memiliki rasa penasaran yang sama dengan penulis


Dari segi nama mungkin masuk akal kalau dia adalah dari arab, karena teorinya memiliki nama yang terkesan menggunakan bahasa Arab . Tetapi yang masih penulis bingung, apakah benar penemunya orang keturunan Arab. Mengingat dari sebagian besar ilmuwan yang telah di akui sekarang, kebanyakan berasal dari Benua Biru Eropa. Ditambah lagi sepengetahuan penulis, bangsa Asia Barat memang terkenal tidak memiliki peradaban Ilmu yang baik, masih bersifat Bar- Bar dan tradisional.

Untuk itu setelah 5 tahun lamanya memendam rasa penasaran ini, akhirnya penulis berusaha mencari tahu teori yang paling banyak membikin bingung kebanyakan kalangan saat ini.

SEJARAHNYA ADALAH

Asal mula Aljabar dapat ditelusuri berasal dari bangsa Babilonia Kuno yang mengembangkan sistem aritmatika yang cukup rumit, dengan hal ini, bangsa Kuno ini mampu menghitung dalam cara yang mirip dengan aljabar sekarang ini. Dengan menggunakan sistem ini, mereka mampu mengaplikasikan rumus dan menghitung solusi untuk nilai yang tak diketahui untuk kelas masalah yang biasanya dipecahkan dengan menggunakan persamaan Linier, Persamaan Kuadrat dan Persamaan Linier tak tentu.

Kemudian Bangsa Mesir, dan kebanyakan bangsa India, Yunani, serta Cina dalam milenium pertama sebelum masehi, Lebih sering menggunakan metode geometri untuk memecahkan persamaan seperti ini, misalnya seperti yang disebutkan dalam ‘the Rhind Mathematical Papyrus’, ‘Sulba Sutras’, ‘Euclid’s Elements’, dan ‘The Nine Chapters on the Mathematical Art’.

Hasil karya bangsa Yunani dalam Geometri, yang tertulis dalam kitab Elemen, menyediakan kerangka berpikir untuk menggeneralisasi formula matematika di luar solusi khusus dari suatu permasalahan tertentu ke dalam sistem yang lebih umum untuk menyatakan dan memecahkan persamaan, yaitu kerangka berpikir logika Deduksi.

Sekitar tahun 300 S.M seorang sarjana Yunani kuno Euclid menulis buku yang berjudul "Elements". Dalam buku itu ia mencantumkan beberapa rumus aljabar yang benar untuk semua bilangan yang ia kembangkan dengan mempelajari bentuk-bentuk geometris. Perlu diketahui, orang-orang Yunani kuno menuliskan permasalahan-permasalahan secara lengkap jika mareka tidak dapat memecahkan permasalahan-permasalahan tersebut dengan menggunakan geometri. Metode inilah yang kemudian menjadikan kemampuan mereka untuk memecahkan permasalahan-permasalahan yang mendetail menjadi terbatasi.

Seiring dengan perkembangan zaman, Pada abad ke-3, Diophantus of Alexandria (250 M) menulis sebuah buku berjudul Aritmetika, dimana ia menggunakan simbol-simbol untuk bilangan-bilangan yang tidak diketahui dan untuk operasi-operasi seperti penambahan dan pengurangan. Sistemnya tidak sepenuhnya dalam bentuk simbol, tetapi berada diantara sistem Euclid dan apa yang digunakan sekarang ini.Lambat laun bangsa Arab mulai mengenal teori yang dimiliki negara jajahan tersebut. Kemudian munculah tokoh yang sekarang ini dianggap sebagai penemu teor Aljabar, dialah Al-Khawarizmi , seorang muslim keturunan Usbekistan dan lahir pada tahun 780 masehi atau 194 Hijriah menurut kalender islam. Dibidan pendidikan, telah dibuktikan bahwa ialah seorang tokoh Islam yang berpengetahuan luas. Pengetahuan dan kemahiran al-Khawarizmi bukan hanya meliputi bidang syariat tetapi juga dalam bidang falsafah, logika, aritmetik, geometri, musik, sastra, sejarah Islam dan ilmu kimia. Keahlian dirinya pada ilmu matematika telah membawa dirinya menciptakan pemakaian Secans dan Tangens dalam penyelidikan trigonometri dan astronomi. Dalam usia muda ia telah bekerja di bawah pemerintahan Khalifah al-Ma’mun, daerah Bayt al-Hikmah di Baghdad. al-Khawarizmi bekerja dalam sebuah observatory atau tempat ilmu matematik dan astronomi yang ia gali lebih dalam. Al-Khawarizmi juga dipercayai memimpin perpustakaan khalifah.

Sedikit tambahan dari penulis Sumbangsih terbesar al-Khawarizmi adalah karyanya yang terangkum dalam buku bukunya yang berjudul sebagai berikut.

Al-Jabr wa’l Muqabalah : Penciptaan pemakaian secans dan tangens dalam penyelidikan trigonometri dan astronomi.

Hisab al-Jabr wa al-Muqabalah : Sebuah buku yang merangkum pemecahan dari permasalan masalah matematika yang sebagian telah dikemukakan bangsa Babilonia kuno. Dan Kebenarannya diakui oleh al-Khawarizmi .

Sistem Nombor : Beliau telah memperkenalkan konsep sifat dan ia penting dalam sistem nombor pada zaman sekarang.


Sedikit kata sobat jangan pernah berhenti untuk menjadi pintar tapi jangan memaksakan diri anda terlalu keras untuk menjadi pintar . .

karena sobat


Banyak orang mengatakan kepintaran yang menjadikan seseorang Ilmuwan besar. Mereka keliru.. itu adalah karakter.
Many people say that the intelligence that make the great scientists. They are mistaken .. it is the characters.


(albert einstein)


http://orange-education.blogspot.com/2010/02/asal-mula-teori-aljabar.html

Sumber:
Dapat dilihat disini

SEJARAH TEORI BILANGAN

Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama.

Sejarah menunjukkan bahwa permulaan Matematika berasal dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim. Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki. Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.

Awal Bilangan
Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya setelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya.
Bilangan dahulunya digunakan sebagai symbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk menggambarkan bilangan dalam bentuk simbol diantaranya :
Simbol bilangan bangsa Babilonia:
Simbol bilangan bangsa Maya di Amerika pada 500 tahun SM:
Simbol bilangan menggunakan huruf Hieroglif yang dibuat bangsa Mesir Kuno:
Simbol bilangan bangsa Arab yang dibuat pada abad ke-11 dan dipakai hingga kini oleh umat Islam di seluruh dunia:
Simbol bilangan bangsa Yunani Kuno:
Simbol bilangan bangsa Romawi yang juga masih dipakai hingga kini:
Dalam perkembangan selanjutnya, pada abad ke-X ditemukanlah manuskrip Spanyol yang memuat penulisan simbol bilangan oleh bangsa Hindu-Arab Kuno dan cara penulisan inilah yang menjadi cikal bakal penulisan simbol bilangan yang kita pakai hingga saat ini, seperti yang tampak dalam gambar berikut:
Perkembangan Teori Bilangan
Teori Bilangan Pada suku Babilonia
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai “Matematika Babilonia” karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal
Teori Bilangan Pada Suku Bangsa Mesir Kuno
Matematika Mesir merujuk pada matematika yang ditulis di dalam bahasa Mesir. Sejak peradaban helenistik matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan Matematika helenistik. Pengkajian matematika di Mesir berlanjut di bawah Khilafah Islam sebagai bagian dari matematika Islam, ketika bahasa Arab menjadi bahasa tertulis bagi kaum terpelajar Mesir.
Tulisan matematika Mesir yang paling panjang adalah Lembaran Rhind (kadang-kadang disebut juga “Lembaran Ahmes” berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari Kerajaan Tengah yaitu dari tahun 2000-1800 SM. Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, pembagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya, termasuk bilangan komposit dan prima; rata-rata aritmetika, geometri, dan harmonik; dan pemahaman sederhana Saringan Eratosthenes dan teori bilangan sempurna (yaitu, bilangan 6). Lembaran itu juga berisi cara menyelesaikan persamaan linear orde satu juga barisan aritmetika dan geometri.
Naskah matematika Mesir penting lainnya adalah lembaran Moskwa, juga dari zaman Kerajaan Pertengahan, bertarikh kira-kira 1890 SM. Naskah ini berisikan soal kata atau soal cerita, yang barangkali ditujukan sebagai hiburan.
Teori Bilangan Pada Suku Bangsa India
Sulba Sutras (kira-kira 800–500 SM) merupakan tulisan-tulisan geometri yang menggunakan bilangan irasional, bilangan prima, aturan tiga dan akar kubik; menghitung akar kuadrat dari 2 sampai sebagian dari seratus ribuan; memberikan metode konstruksi lingkaran yang luasnya menghampiri persegi yang diberikan, menyelesaikan persamaan linear dan kuadrat; mengembangkan tripel Pythagoras secara aljabar, dan memberikan pernyataan dan bukti numerik untuk teorema Pythagoras.
Kira-kira abad ke-5 SM merumuskan aturan-aturan tata bahasa Sanskerta menggunakan notasi yang sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, transformasi, dan rekursi. Pingala (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalah prosodynya menggunakan alat yang bersesuaian dengan sistem bilangan biner. Pembahasannya tentang kombinatorika bersesuaian dengan versi dasar dari teorema binomial. Karya Pingala juga berisi gagasan dasar tentang bilangan Fibonacci.
Pada sekitar abad ke 6 SM, kelompok Pythagoras mengembangkan sifat-sifat bilangan lengkap (perfect number), bilangan bersekawan (amicable number), bilangan prima (prime number), bilangan segitiga (triangular number), bilangan bujur sangkar (square number), bilangan segilima (pentagonal number) serta bilangan-bilangan segibanyak (figurate numbers) yang lain. Salah satu sifat bilangan segitiga yang terkenal sampai sekarang disebut triple Pythagoras, yaitu : a.a + b.b = c.c yang ditemukannya melalui perhitungan luas daerah bujur sangkar yang sisi-sisinya merupakan sisi-sisi dari segitiga siku-siku dengan sisi miring (hypotenosa) adalah c, dan sisi yang lain adalah a dan b. Hasil kajian yang lain yang sangat popular sampai sekarang adalah pembedaan bilangan prima dan bilangan komposit. Bilangan prima adalah bilangan bulat positif lebih dari satu yang tidak memiliki Faktor positif kecuali 1 dan bilangan itu sendiri. Bilangan positif selain satu dan selain bilangan prima disebut bilangan komposit. Catatan sejarah menunjukkan bahwa masalah tentang bilangan prima telah menarik perhatian matematikawan selama ribuan tahun, terutama yang berkaitan dengan berapa banyaknya bilangan prima dan bagaimana rumus yang dapat digunakan untuk mencari dan membuat daftar bilangan prima.
Dengan berkembangnya sistem numerasi, berkembang pula cara atau prosedur aritmetis untuk landasan kerja, terutama untuk menjawab permasalahan umum, melalui langkah-langkah tertentu, yang jelas yang disebut dengan algoritma. Awal dari algoritma dikerjakan oleh Euclid. Pada sekitar abad 4 S.M, Euclid mengembangkan konsep-konsep dasar geometri dan teori bilangan. Buku Euclid yang ke VII memuat suatu algoritma untuk mencari Faktor Persekutuan Terbesar dari dua bilangan bulat positif dengan menggunakan suatu teknik atau prosedur yang efisien, melalui sejumlah langkah yang terhingga. Kata algoritma berasal dari algorism. Pada zaman Euclid, istilah ini belum dikenal. Kata Algorism bersumber dari nama seorang muslim dan penulis buku terkenal pada tahun 825 M., yaitu Abu Ja’far Muhammed ibn Musa Al-Khowarizmi. Bagian akhir dari namanya (Al-Khowarizmi), mengilhami lahirnya istilah Algorism. Istilah algoritma masuk kosakata kebanyakan orang pada saat awal revolusi komputer, yaitu akhir tahun 1950.
Pada abad ke 3 S.M., perkembangan teori bilangan ditandai oleh hasil kerja Erathosthenes, yang sekarang terkenal dengan nama Saringan Erastosthenes (The Sieve of Erastosthenes). Dalam enam abad berikutnya, Diopanthus menerbitkan buku yang bernama Arithmetika, yang membahas penyelesaian persamaan didalam bilangan bulat dan bilangan rasional, dalam bentuk lambang (bukan bentuk/bangun geometris seperti yang dikembangkan oleh Euclid). Dengan kerja bentuk lambang ini, Diopanthus disebut sebagai salah satu pendiri aljabar.
Teori Bilangan Pada Masa Sejarah (Masehi)
Awal kebangkitan teori bilangan modern dipelopori oleh Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783), J.L Lagrange (1736-1813), A.M. Legendre (1752-1833), Dirichlet (1805-1859), Dedekind (1831-1916), Riemann (1826-1866), Giussepe Peano (1858-1932), Poisson (1866-1962), dan Hadamard (1865-1963). Sebagai seorang pangeran matematika, Gauss begitu terpesona terhadap keindahan dan kecantikan teori bilangan, dan untuk melukiskannya, ia menyebut teori bilangan sebagai the queen of mathematics.
Pada masa ini, teori bilangan tidak hanya berkembang sebatas konsep, tapi juga banyak diaplikasikan dalam berbagai bidang ilmu pengetahuan dan teknologi. Hal ini dapat dilihat pada pemanfaatan konsep bilangan dalam metode kode baris, kriptografi, komputer, dan lain sebagainya
Tokoh-Tokoh Teori Bilangan
Pythagoras (582-496 SM)
Pythagoras adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya. Dikenal sebagai “Bapak Bilangan”, dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM.
Salah satu peninggalan Pythagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia yang pertama kali membuktikan pengamatan ini secara matematis.
Jamshid Al-Kashi (1380 M)
Al-Kashi terlahir pada 1380 di Kashan, sebuah padang pasir di sebelah utara wilayah Iran Tengah. Selama hidupnya, al-Kashi telah menyumbangkan dan mewariskan sederet penemuan penting bagi astronomi dan matematika.
Pecahan desimal yang digunakan oleh orang-orang Cina pada zaman kuno selama berabad-abad, sebenarnya merupakan pecahan desimal yang diciptakan oleh al-Kashi. Pecahan desimal ini merupakan salah satu karya besarnya yang memudahkan untuk menghitung aritmatika yang dia bahas dalam karyanya yang berjudul Kunci Aritmatika yang diterbitkan pada awal abad ke-15 di Samarkand.
Abu Ali Hasan Ibnu Al-Haytam (965 M)
Abu Ali Hasan Ibnu Al-Haytam lahir Basrah Irak, yang oleh masyarakat Barat dikenal dengan nama Alhazen. Al-Haytam adalah orang pertama yang mengklasifikasikan semua bilangan sempurna yang genap, yaitu bilangan yang merupakan jumlah dari pembagi-pembagi sejatinya, seperti yang berbentuk 2k-1(2k-1) di mana 2k-1 adalah bilangan prima. Selanjutnya Al-Haytam membuktikan bahwa bila p adalah bilangan prima, 1+(p-1)! habis dibagi oleh p.
Pierre de Fermat
Fermat menuliskan bahwa “I have discovered a truly remarkable proof which this margin is to small to contain”. Fermat juga hampir selalu menulis catatan kecil sejak tahun 1603, manakala ia pertama kali mempelajari Arithmetica karya Diophantus. Ada kemungkinan Fermat menyadari bahwa apa yang ia sebut sebagai remarkable proof ternyata salah, karena semua teorema yang dia nyatakan biasanya dalam bentuk tantangan yang Fermat ajukan terhadap matematikawan lain. Meskipun kasus khusus untuk n = 3 dan n = 4 ia ajukan sebagai tantangan (dan Fermat mengetahui bukti untuk kasus ini) namun teorema umumnya tidak pernah ia sebut lagi. Pada kenyataannya karya matematika yang ditinggalkan oleh Fermat hanya satu buah pembuktian. Fermat membuktikan bahwa luas daerah segitiga siku- siku dengan sisi bilangan bulat tidak pernah merupakan bilangan kuadrat. Jelas hal ini mengatakan bahwa tidak ada segitiga siku-siku dengan sisi rasional yang mempunyai luas yang sama dengan suatu bujursangkar dengan sisi rasional. Dalam simbol, tidak terdapat bilangan bulat x, y, z dengan sehingga bilangan kuadrat. Dari sini mudah untuk mendeduksi kasus n = 4, Teorema Fermat. Penting untuk diamati bahwa dalam tahap ini yang tersisa dari pembuktian Fermat Last Theorem adalah membuktikan untuk kasus n bilangan prima ganjil. Jika terdapat bilangan bulat x, y, z dengan maka jika n = pq, .
Kapankah angka nol ditemukan?
Zero = 0 = Empty = Kosong (Nol) Memang, kata dalam Bahasa Inggris ‘zero’ (nol) berasal dari bahasa Arab ‘sifr’, suatu terjemahan literal dari bahasa Sanskrit “shûnya” yang bermakna “kosong”. Runtutan keterkaitan bahasa dari masa ke masa: shûnya (Sanskrit) -> (Ancient Egypt/Babylonia) -> (Greek/Helenic) -> (Rome/Byzantium) – sifr (Arab) -> zero (English) -> nol; kosong (Indonesia) Wikipedia The word “zero” comes ultimately from the Arabic “sifr”, or “empty,” a literal translation of the Sanskrit “shûnya”. With its new use for the concept of zero, zephyr came to mean a light breeze – “an almost nothing” (Ifrah 2000; see References). The word zephyr survives with this meaning in English today. The Italian mathematician Fibonacci (c.1170-1250), who grew up in Arab North Africa and is credited with introducing the Arabic decimal system to Europe. Around the same time, the Arab mathematician al-Khwarizmi described the “Hindu number” system with positional notation and a zero symbol in his book Kitab al-jabr wa’l muqabalah. Nol asalnya dari India “shûnya” bukan cuma sebuah istilah, tapi juga konsep.
Sekitar tahun 300 SM orang babilonia telah memulai penggunaan dua buah baji miring, //, untuk menunjukkan sebuah tempat kosong, sebuah kolom kosong pada Abakus. Simbol ini memudahkan seseorang untuk menentukan letak sebuah symbol. Angka nol sangat berguna dan merupakan simbol yang menggambarkan sebuah tempat kosong dalam Abakus, sebuah kolom dengan batu-batu yang ditempatkan di dasar. Kegunaannya hanya untuk memastikan bahwa butiran-butiran tersebut berada di tempat yang tepat, angka nol tidak memiliki nilai numeric tersendiri.
Pada komputer nol ini dapat merusak sistem, karena nol diartikan tidak ada. Berapapun bilangan dikalikan dengan nol hasilnya tidak ada. Nah inilah yang membuat bingung dalam operasi perhitungan.
Perhatikan contoh ini :
0=0 ( nol sama dengan nol, benar)
0 x3=0 x 89 (nol sama-sama dikalikan dengan sebuah bilangan, karena juga akan bernilai nol)
(0 x 3)/0= (0 x 89)/0 (sebuah bilangan dibagi dengan bilangan yang sama, akan bernilai satu)
3=89 (???, hasil ini yang membuat bingung)
Walaupun demikian sebenarnya nol itu hebat, jika tidak ditemukan angka nol tulisan satu juta dalam bilangan romawi ditulis apa?? Bisa-bisa selembar kertas tidak sampai untuk hanya memberikan symbol satu juta itu. Bisa dibayangkan jika nol tidak ada. Banyak kekuatan yang terkandung dalam angka ini. Nol adalah perangkat paling penting dalam matematika. Namun berkat sifat matematis dan filosofis yang aneh pada angka nol, ia akan berbenturan dengan filsafat barat.
Angka nol berbenturan dengan salah satu prinsip utama filsafat barat, sebuah dictum yang akar-akarnya terhujam dalam filsafat angka Phythagoras dan nilai pentingnya tumbuh dari paradoks Zeno. seluruh cosmos Yunani didirikan di atas pilar: tak ada kekosongan.
Kosmos Yunani yang dis=ciptakan oleh Phytagoras, Aristoteles dan Ptolemeus masih lama bertahan setelah keruntuhan peradaban Yunani. Dalam kosmos ini tak ada ketiadaaan. Oleh karena itu, hampir sepanjang dua milinium orang-orang barat tak bersedia menerima angka nol. Konsekuensinya sungguh menakutkan. Ketiadaan angka nol menghambat perkembangan matematika, menghalangi inovasi sains dan yang lebih berbahaya, mengacaukan sistem penanggalan.
Macam-macam bilangan
Bilangan Bulat adalah bilangan yang terdiri atas bilangan positif, bilangan nol, dan bilangan negatif.
Misal : ….-2,-1,0,1,2….
Bilangan asli adalah bilangan bulat positif yang diawali dari angka 1(satu) sampai tak terhingga.
Misal : 1,2,3….
Bilangan cacah adalah bilangan bulat positif yang diawali dari angka 0 (nol) sampai tak terhingga.
Misal : 0,1,2,3,….
Bilangan prima adalah bilangan yang tepat mempunyai dua faktor yaitu bilangan 1 (satu) dan bilangan itu sendiri.
Misal : 2,3,5,7,11,13,…..
(1 bukan bilangan prima, karena mempunyai satu faktor saja).
Bilangan komposit adalah bilangan yang bukan 0, bukan 1 dan bukan bilangan prima.
Misal ; 4,6,8,9,10,12,….
Bilangan rasional adalah bilangan yang dinyatakan sebagai suatu pembagian antara dua bilangan bulat (berbentuk bilangan a/b, dimana a dan b merupakan bilangan bulat).
Misal: 1/2 ,2/(3 ),3/4….
Bilangan irrasional adalah bilangan yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat.
Misal: π, √3 , log 7 dan sebagainya.
Bilangan riil adalah bilangan yang merupakan penggabungan dari bilangan rasional dan bilangan irrasional
Misal: 1/2 √(2 ),1/3 √5,1/4 π,2/3 log⁡2 dan sebagainya.
Bilangan imajiner (bilangan khayal) adalah bilangan yang ditandai dengan i, bilangan imajiner i dinyatakan sebagai √(-1). Jadi, jika i = √(-1) maka i2= -1
Misal: √(-4)=⋯?
√(-4)=√(4×(-1) )
= √4×√(-1)
= 2 × i
= 2i
Jadi, √(-4)=2i.
Bilangan kompleks adalah bilangan yang merupakan penggabungan dari bilangan riil dan bilangan imajiner.
Misal; π√(-1)= πi
Log √(-1)=log⁡i
Sumber:
Dapat dilihat disini

MENGAPA BELAJAR MATEMATIKA (3)

Mengapa Studi Matematika?

Peluang Karir

Studi matematika dapat menyebabkan berbagai karir profesional menarik. Penelitian dasar, teknik, keuangan, bisnis, dan pelayanan pemerintah adalah salah satu kesempatan yang terbuka bagi mereka dengan pelatihan matematika. Selain itu, dengan semakin pentingnya ilmu dasar dan teknologi informasi, prospek untuk karir dalam ilmu matematika sangat baik. Analisis matematis dan model komputasi penting untuk memecahkan beberapa masalah yang paling mendesak waktu kita - sumber baru energi, perubahan iklim, manajemen risiko, epidemiologi, untuk beberapa nama. Kita harus berusaha untuk mempertahankan keunggulan teknologi kami, kemampuan matematika akan sangat penting untuk upaya ini.
Beberapa posisi bisnis yang lebih spesifik meliputi analisis portofolio, studi desain, analisis statistik, simulasi komputer, desain perangkat lunak dan pengujian, dan area lain dari riset operasi. Ada peluang yang luas untuk matematika di bidang keuangan, bidang aktuaria, dan peramalan ekonomi.
Banyak laboratorium, baik pemerintah maupun swasta, mempertahankan staf penelitian independen yang mencakup matematika. Pekerjaan mereka sering berkaitan dengan pengembangan teknologi baru, termasuk penelitian dalam fisika dan pengembangan perangkat lunak dasar, serta matematika terapan. Simulasi numerik, seperti cuaca dan prakiraan iklim, sangat bergantung pada penggunaan superkomputer.
Pertimbangan praktis samping, ada kesenangan belajar, menerapkan, dan menciptakan matematika. Masalah dunia nyata menimbulkan masalah yang dapat dipelajari dengan merumuskan dan menganalisis model matematika. Dalam beberapa kasus dapat menyebabkan aplikasi matematika baru, dan cabang baru dari ilmu lahir. Dalam kasus lain teori abstrak menemukan tujuan praktis tak terduga. Bekerja pada masalah penelitian ini menarik, memecahkan masalah yang sulit berhasil adalah, bagi banyak orang, kepuasan yang cukup.

Pascasarjana Studi di Matematika

Sementara karir di matematika bisa sangat menarik, dibutuhkan waktu untuk memperoleh keterampilan yang diperlukan, khususnya untuk penelitian dasar di Ph.D. tingkat. Studi pascasarjana sangat penting untuk hampir semua field. Urutan program sarjana menyediakan fondasi yang matematika lebih maju akan dibangun. Dalam studi pascasarjana, satu atau dua tahun lebih lanjut dari kursus selesai pelatihan dasar ini. Setelah itu, program yang lebih khusus, sering pada batas-batas penelitian, diambil. Matematika siswa Terapan akan mengambil kursus di berbagai area aplikasi untuk memperoleh pengalaman dalam pemodelan dunia nyata, dan belajar bagaimana matematika dapat membantu dengan masalah dari ilmu fisika dan biologi, dan di bidang keuangan.
Luas dan kedalaman kerja akan tergantung pada tingkat sarjana. Dengan gelar MS, siswa dipersiapkan untuk banyak pekerjaan dalam pemerintahan, bisnis, dan industri; dengan Ph.D. tingkat pilihan yang lebih luas. Banyak Ph.D. matematikawan bergabung dengan fakultas dari universitas atau empat tahun kuliah, di mana mereka tidak hanya mengajar tetapi juga melakukan penelitian dan mempublikasikan hasil mereka dalam jurnal ilmiah dan buku. Lainnya mengambil posisi post-doktoral di berbagai laboratorium di seluruh dunia, di mana pekerjaan yang menarik bagi mereka yang sedang dilakukan. Yang lain mengejar karir dalam penelitian perusahaan dan manajemen. Dengan baik sebagai MS atau Ph.D., gaji awal secara signifikan lebih tinggi daripada lulusan dengan gelar sarjana.
Pada kedua MS dan Ph.D. tingkat, studi pascasarjana dalam matematika mengembangkan sejumlah keterampilan penting untuk memecahkan masalah yang disarankan baik oleh matematika atau pertanyaan dunia nyata. Terpenting adalah kemampuan untuk memecahkan masalah yang kompleks menjadi lebih kecil, masalah lebih mudah dikelola, sampai model tercapai yang dapat benar-benar dipelajari dan dipahami. Terapan matematika mengembangkan seni penggalian model kuantitatif dari masalah fisika, biologi, teknik dan ekonomi. Kemampuan ini berasal dari pengalaman, seperti yang diperoleh secara bertahap dari contoh-contoh belajar di program pascasarjana.

Latar Belakang Sarjana

Seorang mahasiswa sarjana yang ingin masuk ke studi pascasarjana dalam matematika pertama harus memenuhi persyaratan sarjana dasar. Kursus yang paling penting adalah urutan kalkulus (sering tiga program jangka satu dan kursus dalam kalkulus lanjutan) dan kursus dalam aljabar linear. Program probabilitas, statistik, dan pengenalan ilmu komputer juga berguna. Kursus di aljabar dan topologi dapat memberikan pengenalan matematika yang lebih abstrak. Mahasiswa yang tertarik dalam matematika terapan mungkin ingin mempertimbangkan untuk mengambil mata kuliah inti dari departemen lain, seperti fisika, kimia atau biologi. Kursus pengantar dalam persamaan diferensial biasa dan parsial berguna. Hal ini diinginkan untuk menguasai setidaknya satu bahasa komputer.
Bila memungkinkan, mahasiswa yang tertarik dalam aplikasi harus mencari latar belakang ilmiah yang luas. Memahami masalah dari sudut pandang lebih dari satu khusus atau aplikasi dapat membantu mengarah pada pemahaman yang lebih dalam matematika juga. The Courant Institute menyambut pelamar dengan gelar sarjana dalam bidang ilmu lain, seperti fisika, biologi, atau rekayasa.

Sumber:
Dapat dilihat disini